

GLOBALCON 2002 Philadelphia, Pennsylvania March 27, 2002

Application of Advanced Energy Technologies

Michael K. West, Ph.D., P.E. Building Systems Scientist Advantek Consulting, Inc.

www.advantekinc.com

- Strategic Project Management & Prioritization
- Specialists in Energy Efficiency Technology
 - Analysis
 - Engineering
 - Implementation
- Attention to Overall Building Performance
- A Small Business Vested in Your Success

MAIN POINTS of Presentation

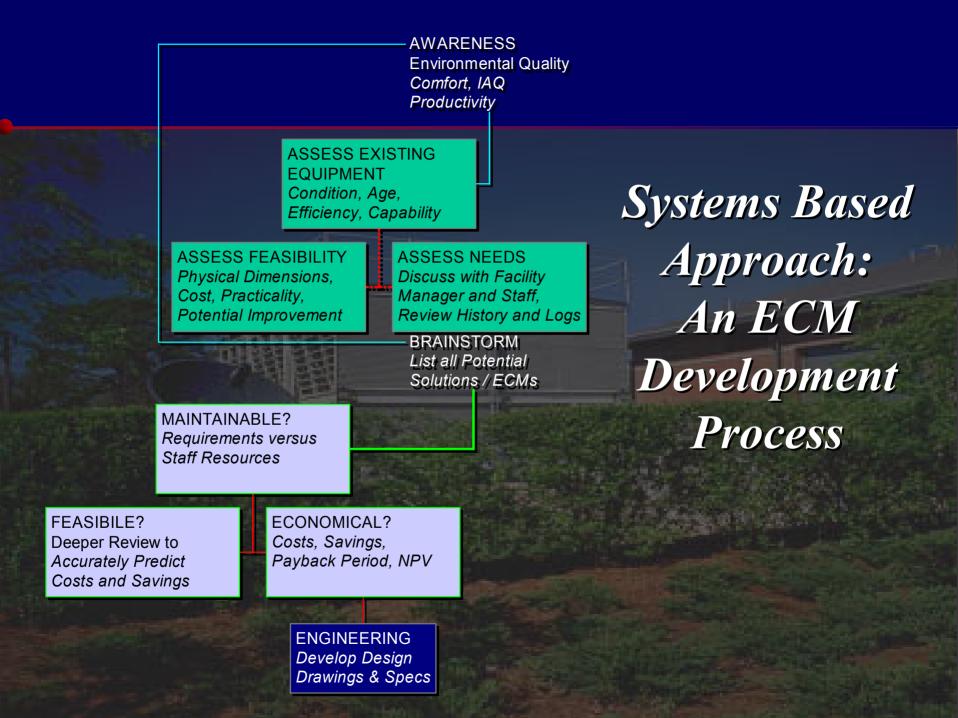
- Advanced technologies provide savings in addition to savings from standard lighting and HVAC retrofits by 50% or more
 Proper application of advanced technology requires a thorough systems-based energy survey and rigorous engineering
- Longer payback periods require detailed economic analysis and innovative financing requirements to achieve economic viability

Strategic Energy Management

A well thought out plan includes: Explicit savings goals ✓ Strategic project prioritization and focusing of resources ✓ Attention to both *operations* and *technology* Comprehensive energy and water surveys Application of the best available advanced technologies ✓ Financing options and review of rebates and incentives \checkmark Coordination with Green Lights[®] and ENERGY STAR[®] ✓ Proactive Training and Preventative Maintenance Planning ✓ Options for making the most of utility restructuring ✓ Measurement & Verification of Savings

ECM CHECKLIST

Building Room


LIGHTING

- □ UPGRADE TO T8 LAMPS
- □ COMPACT FLORESCENTS
- □ CHANGE EXIT SIGNS TO LED
- □ INSTALL OCCUPANCY SENSORS
- □ PHOTOCELL OR TIMER

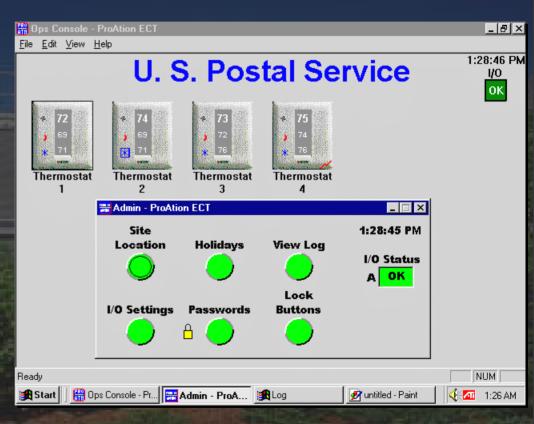
HVAC

- □ VARIABLE SPEED DRIVE
- CHILLER REPLACEMENT
- □ CONTROL SYSTEM UPGRADE
- REPLACE CONDENSING UNIT
- SETBACK THERMOSTAT

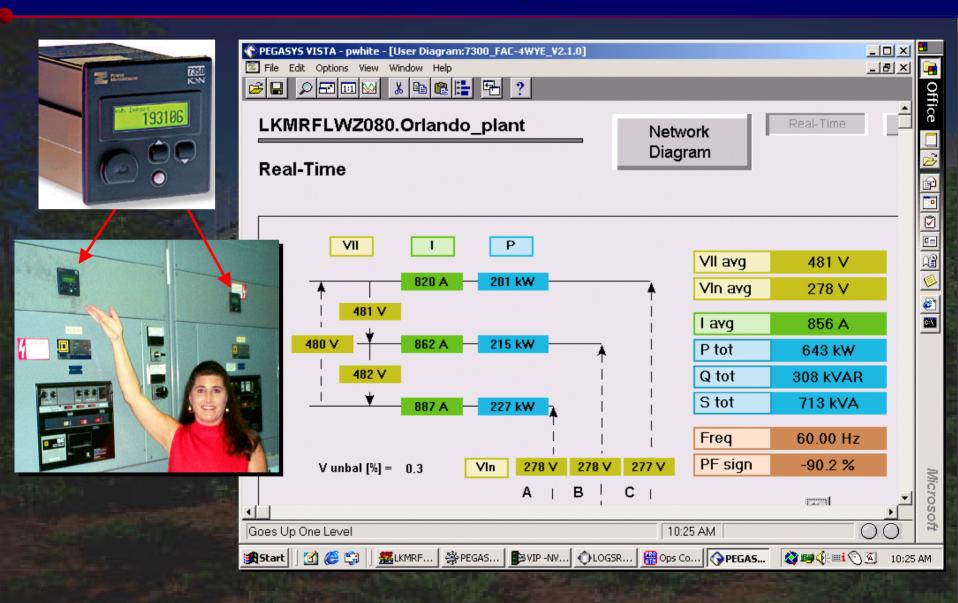
Equipment Based Approach: An ECM **Checklist**

Advanced HVAC Technologies

- Internet Communicating Thermostats
- Dual Source (Ground-plus-Air) HVAC
- Desiccant Fresh Air Pre-Conditioning
 - Micro-Turbine CHP (GLOBALCON Track 1)
- Engineered Package Unit Modifications
- Solar Hot Water Heating
- Cold Air Distribution
- Heat Pipe Heat Recovery
- Demand Controlled Ventilation (DCV)
- Thermal Storage

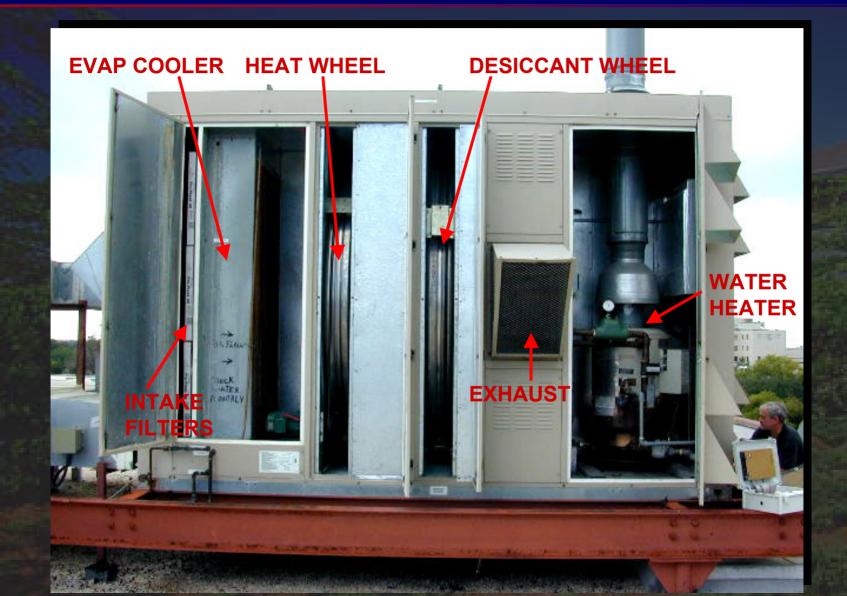

Advanced Energy Technologies

LOAD SHIFTING


- On-Site Co-generation
 - Micro-Turbine, Fuel Cells, Absorption Chiller
- Web-enabled Power Meters (GLOBALCON Session 2B)
- BAS Load Shedding and Demand Limiting
- RENEWABLE ENERGY
 - Solar Ventilation-air and Space Heating
 - Solar Shower, Kitchen, and Lavatory Water Heating
 - PV electricity for remote sites and emergency power

ECM Example: Internet Communicating Thermostats

- Monitor and Control All
 Thermostat Functions
- Access from any PC
- Observe, Trend, and Limit Set Point Changes
- Auxiliary Control and Monitoring of Lighting
- Cost Effective BAS for Groups of Smaller Buildings


ECM Example: Internet Communicating Power Monitors

ECM Example: Internet Communicating Power Monitors

- Demand Responsive Buildings
 - Real time building/account metering
 - Sliding window interval data recording
 - (15-minute interval)
 - Web Access TCP/IP Communications
 - Provides building operators ability to reduce HVAC, lighting, or process loads in response to price signals

ECM Example: Desiccant Ventilation Units

ECM Example: Desiccant Ventilation Units

Energy Efficiency

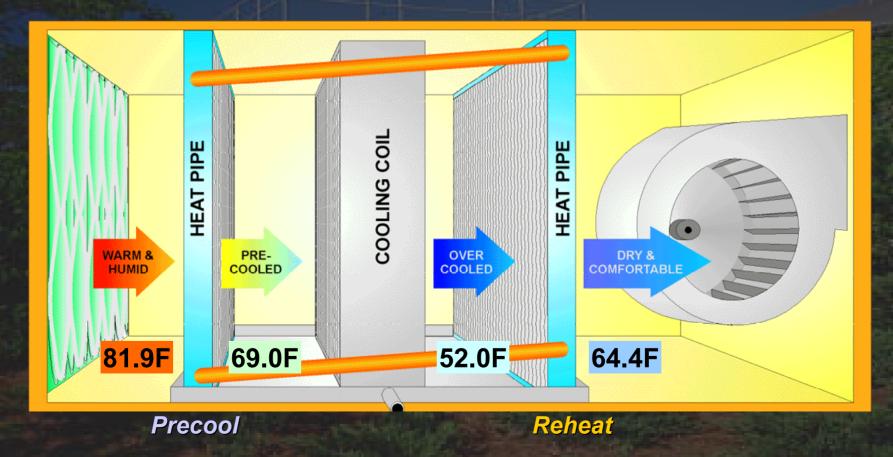
- Manufacturer's peak load rating: 0.73 COP
- Measured peak load rating: 0.83 COP
- Measured average: 0.53 COP
- Cooling Capacity
 - 19% less dehumidification than rated
 - 155 MBH measured versus 248 MBH rated
- Heat Input
 - 12% less than manufacturer's rating

ECM Example: Micro-Turbine CHP

Microturbines - commercially available clean power

- Capstone 30 kW or 60kW
- Waste heat is used to power desiccant unit

Application Example: Patrick Air Force Base Dormitories


Four 30kW Microturbines 370 kW load shed 190 MBH Hot Water for Showers & Laundry 15,480 cfm Conditioned Outside Air

Annual Savings: \$38,000 Installed Cost: \$225,000 Simple Payback: 6 years

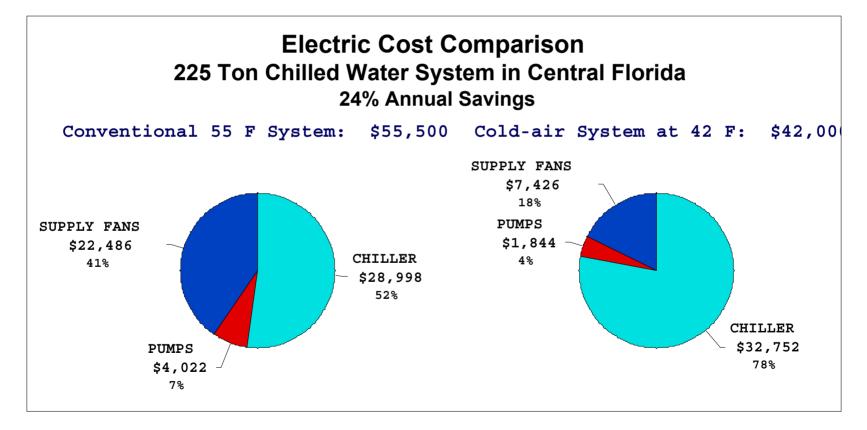
ECM Example: Dehumidifier Heat Pipe

- Doubles Latent Heat Capacity
- 60% More Energy Efficient than Electric Reheat

Rigorous Engineering & Savings Analysis

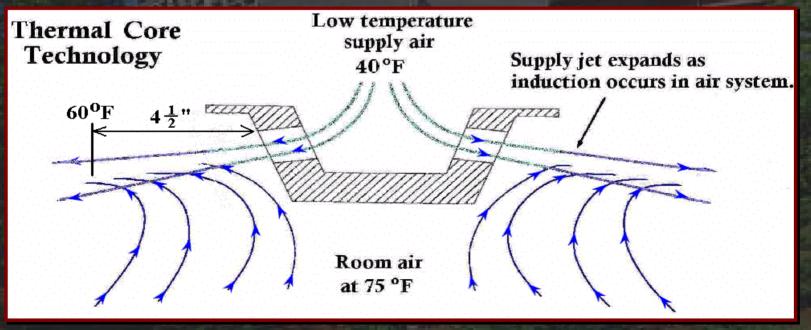
- Visual DOE2.1e
- Energy-10
- e-Quest
- System Analyzer
- Joint Frequency BIN
- Desi-Calc
- Proprietary Software

File Print Economics Back Run Standard or Actual Air C Standard or Actual Air Tube OD 5/8 Fin Sine Wave FPI 12 Row 3 Elevation (ft) 55 Precool Reheat OA RA MA LA DB(F) 90 74 81.89 52 WB(F) 78 67 72.84 51.5 RH(%) 59.00 51.16 65.36 96.80 CFM 10000 10000 20003 20003 Humidity Ratio 0.0154 0.0080 Dew Point(F) 69.14 Sp.Vol.(cubic ft/lb) 14.019 13.092 Enthalpy(BTU/lb) 36.54 21.16 Cooling Coil(BTU/hr) 1021083 BT Change(F) 12.86 12.44 Heat Transfer 277725 BTU/hr		📕 Dehumidification Heat Pipes - Single Design Condition									
C Standard C Actual Tube OD 5/8 Fin Sine Wave FPI 12 Row 3 Elevation (ft) 55 5 Fine Max Precool Reheat 60 120											
Elevation (ft) 55 OA RA MA LA DB(F) 90 74 81.89 52 WB(F) 78 67 72.84 51.5 RH(%) 59.00 51.16 65.36 96.80 CFM 10000 10000 20003 20003 Humidity Ratio 0.0154 0.0080 Dew Point(F) 69.14 Sp.Vol.(cubic ft/lb) 14.019 13.092 Enthalpy(BTU/lb) 36.54 21.16 Cooling Coil(BTU/hr) 1021083					Tuł	De OD 5/8	▼ Fin Sine Wave	• FPI12	- Row 3		
Crevation (ii) 55 OA RA MA LA DB(F) 90 74 81.89 52 WB(F) 78 67 72.84 51.5 RH(%) 59.00 51.16 65.36 96.80 CFM 10000 10000 20003 20003 Humidity Ratio 0.0154 0.0080 Dew Point(F) 69.14 Sp.Vol.(cubic ft/lb) 14.019 13.092 Transfer Ratio 0.43 0.42 Enthalpy(BTU/lb) 36.54 21.16 DBT Change(F) 12.86 12.44 Heat Transfer 277725 BTU/hr 277725 BTU/hr 277725 BTU/hr								Precool			
OA RA MA LA DB(F) 90 74 81.89 52 WB(F) 78 67 72.84 51.5 RH(%) 59.00 51.16 65.36 96.80 CFM 10000 10000 20003 20003 Humidity Ratio 0.0154 0.0080 Dew Point(F) 69.14 Sp.Vol.(cubic ft/lb) 14.019 13.092 Enthalpy(BTU/lb) 36.54 21.16 Cooling Coil(BTU/hr) 1021083		Eleva	tion (ft)		55		Finned Height(in)				
DB(F) 90 74 81.89 52 WB(F) 78 67 72.84 51.5 RH(%) 59.00 51.16 65.36 96.80 CFM 10000 10000 20003 20003 Humidity Ratio 0.0154 0.0080 Dew Point(F) 69.14 Sp.Vol.(cubic ft/lb) 14.019 13.092 Enthalpy(BTU/lb) 36.54 21.16 Cooling Coil(BTU/hr) 1021083							Finned Length(in)				
WB(F) 78 67 72.84 51.5 RH(%) 59.00 51.16 65.36 96.80 CFM 10000 10000 20003 20003 Humidity Ratio 0.0154 0.0080 Dew Point(F) 69.14 Sp.Vol.(cubic ft/lb) 14.019 13.092 Enthalpy(BTU/lb) 36.54 21.16 Cooling Coil(BTU/hr) 1021083		DB(F)	90	74	81.89	52	Face Area(sq. ft)				
RH(%) 59.00 51.16 65.36 96.80 Ps. Drop(in WG) 0.27 0.29 CFM 10000 10000 20003 20003 Dry Portion (%) 97.11 100.00 Humidity Ratio 0.0154 0.0080 Condensation(lb/hr) 5.56 0.00 Dew Point(F) 69.14 Sp.Vol.(cubic ft/lb) 14.019 13.092 Transfer Ratio 0.43 0.42 Enthalpy(BTU/lb) 36.54 21.16 DBT Change(F) 12.86 12.44 Cooling Coil(BTU/hr) 1021083 Heat Transfer 277725 BTU/hr		WB(F)			72.84	51.5					
CFM 10000 10000 20003 20003 20003 Dry Portion (%) 97.11 100.00 Humidity Ratio 0.0154 0.0080 Condensation(lb/hr) 5.56 0.00 Dew Point(F) 69.14 Condensation(lb/hr) 5.56 0.00 Sp.Vol.(cubic ft/lb) 14.019 13.092 Transfer Ratio 0.43 0.42 Enthalpy(BTU/lb) 36.54 21.16 DBT Change(F) 12.86 12.44 Cooling Coil(BTU/hr) 1021083 Heat Transfer 277725 BTU/hr		RH(%)	59.00	51.16	65.36	96.80					
Humidity Ratio 0.0154 0.0080 Dew Point(F) 69.14 Condensation(lb/hr) 5.56 0.00 Sp.Vol.(cubic ft/lb) 14.019 13.092 Transfer Ratio 0.43 0.42 Enthalpy(BTU/lb) 36.54 21.16 DBT Change(F) 12.86 12.44 Cooling Coil(BTU/hr) 1021083 Heat Transfer 277725 BTU/hr		CFM	10000	10000	20003	20003					
Dew Point(F) 69.14 Transfer Ratio 0.43 0.42 Sp.Vol.(cubic ft/lb) 14.019 13.092 Transfer Ratio 0.43 0.42 Enthalpy(BTU/lb) 36.54 21.16 DBT Change(F) 12.86 12.44 Cooling Coil(BTU/hr) 1021083 Heat Transfer 277725 BTU/hr		Humidi	ty Ratio		0.0154	0.0080					
Sp. vol.(сubic fr/lb) 14.019 13.092 Mathematic faile 0.45 0.42 Enthalpy(BTU/lb) 36.54 21.16 DBT Change(F) 12.86 12.44 Cooling Coil(BTU/hr) 1021083 Heat Transfer 277725 BTU/hr	ŝ	Dew Po	oint(F)		69.14		Condensation(lb/hr)	5.56	0.00		
Cooling Coil(BTU/hr) 1021083 Heat Transfer 277725 BTU/hr	ŝ	Sp.Vol.	(cubic ft/	lb)	14.019	13.092	Transfer Ratio	0.43	0.42		
		Enthalp	y(BTU/Ib))	36.54	21.16	DBT Change(F)	12.86	12.44		
db/wb	Cooling Coil(BTU/hr) 1021083			Heat Transfer	27772	5 BTU/hr					
		db/wh		1 89/72 84		02/69.02	52.00/51.50	64.44/56.6	3		
Precool C/C Reheat			· — ·			102/00/0E			-		


ECM Example: Cold Air Distribution

- More Energy Efficient
- More Dehumidification
- More Occupied Space
 - smaller mechanical rooms
 - less space above ceiling
 - smaller chases
- More Effective Ventilation
 - Higher fraction of fresh air
 - Better room mixing

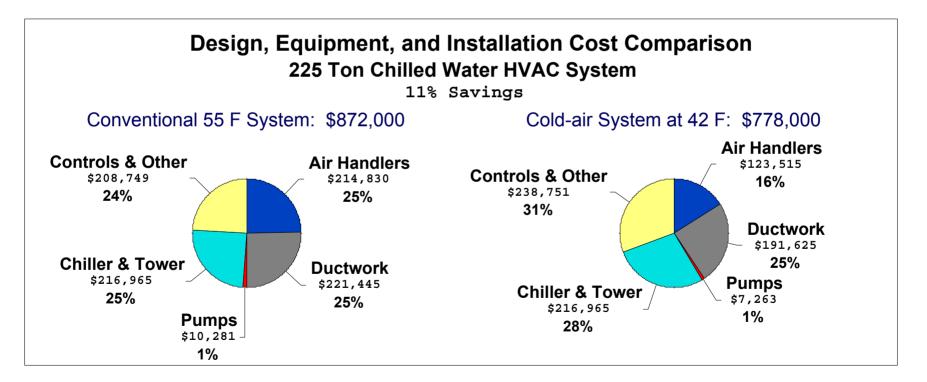
- Smaller Fans
- Less Ductwork
- Less Piping
- Smaller Pumps
- Smaller Motors
- Less Energy Use
- Lower First Cost


Cold-air electric savings

Compare the electric costs for a 225-ton chilled water system with 15,000 cfm of fresh air.

Cold Air Distribution

- Selection of supply diffusers is critical to prevent condensation on diffusers and ceiling, and to ensure adequate mixing with room air at lower cfms.
 - Proper sizing (throw & cfm), location, and insulation
 - Requires a high induction ratio (>2.0)

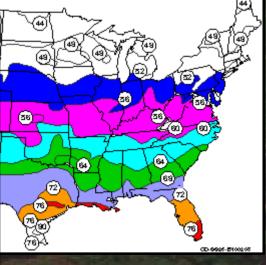


Insulation Thickness for Cold Air

DUCT HANGER	INSUL	ATION	Conilien	sation		
SUP	PLY AIR = 40 F		Cold-Air Duct Ins			
		and the second	FOR SUPPLY AIR	40	DEG F	
				UNCOND	COND	
			DRY BULB	82	80	1. A
			RH DP	90 79	80 73	
			GR/LB	150	124	
		DP - LAT	WET BULB	80	75	
DUCT WALL	R-value = 0.62			50		
		DB - DP	R-VALUE	7	3	
		CONTRACTOR OF	INCHES	2.7	1.1	

Cold-air equipment savings

Compare the design, equipment and installation costs for a 225ton chilled water system with 15,000 cfm of fresh air. Life-cycle cost savings is about \$5 per square foot.


ECM Example: Dual-Source Heat Pumps

- Combines the energy efficiency of ground-source with the low first cost of air-source
- Uses ground-coupling to extend the delta-T available from ambient air

Application Example: MS Naval Training Classroom Building

24,730 square feet Two 35-ton Roof Top Package Units Electric Cost: STANDARD AC: \$17,600 DUAL-SOURCE: \$12,400 (30%) GEOTHERMAL: \$8,000 (55%)

Installed Cost / Payback STANDARD AC: \$30,000 DUAL-SOURCE: \$49,000 / 3.6 years GEOTHERMAL: \$125,000 / 9.9 years

Advanced Technology Applicability

ECM APPLICATION	Stand-alone Communicating HVAC and Lighting Controls	Integration of Building Automation/Control Systems	HVAC Conversions: CAV to VAV, Primary- Secondary to Variable Primary	On-site Electric Generation / Combined Heat & Power	AHU Condensate Reclaim	Bi-Level Task-Ambient Lighting	Solar Hot Water Heating	Ground-Source/Geothermal Cooling	Thermal Energy Storage	Thermal and Infiltration Envelope Improvements	Energy Recovery Units / Waste Heat Recovery	Reflective Roof Coating	Hybrid Gas/Electric Chiller Plant	
Large Existing Buildings		X	X	X	X	X	X	X	X	X	X	X	X	
Small Existing Buildings	X				X	X	X	X		X	X	X		
Labs and Special Use Facilities	x	x	X	X	X	X	X	X		X	X	X	X	
New Construction	X	x	X	X	X	X	X	X	X	X	X	X	X	

Economics is Key to Making The Project Work ... dollars available for advanced technology projects.

Project Component	Amount
Audit	\$20,000
Design	20,000
Contractor Install	250,000
Overhead, Markups, and Profit (20%)	50,000
Finance Charges (10 years 5.35%)	85,000
Total Cost (\$340,000 principal)	425,000 (\$42,500 annual payments)
Savings over 10 years	450,000 (\$45,000 per year savings)
Savings Left after 10 years	\$25,000 Retained Savings is 5.6%

... project is barely worthwhile

0

Making The Project Work Economically

Start with the Retained Savings at the Top

Savings Left after 10 years	\$25,000 Retained Savings is 5.6%
Savings over 10 years	420'000 (\$ 1 2'000 ber year savings)
(Isqioninq 000,045\$) teoO lstoT	452'000 (\$ 1 5'200 suunal bayments)
Finance Сharges (10 уеагs 5.35%)	82'000
Overhead, Markups, and Profit (20%)	20,000
Contractor Install	520 [,] 000
Design	20 [,] 000
tibuA	\$20,000
InenoqmoJ Isejor9	Amount
'Extra' money for aa technology proje	

Making The Project Work Economically

Project Component	Amount				
Retained Savings Goal = 10%	\$50,000 <i>Retained Savings is 10%</i>				
Savings over 10 years	500,000 (\$50,000 per year savings)				
Total Budget (\$360,000 principal)	450,000 (\$45,000 annual payments)				
Financing (10 years 5.35%)	80,000				
Advanced Technology Energy Survey	40,000				
Engineering Design	32,500				
Equipment, Materials, & Labor	265,000 \$40,000 Available				
Overhead, Markups, and Profit (10%)	22,500				

Financing Advanced Projects

• Three Basic Types for Energy Projects - Traditional Capital Payment » pro: Facility has total control of the project » con: Need capital dollars - Performance Contract » pro: ESCO Fully Finances Project » con: ESCO controls project -<u>Hybrid Financing</u>

» Combines the best of Capital with Financing

MAIN POINTS

 Advanced technologies provide savings in addition to savings from standard lighting and HVAC retrofits by 50% or more • Proper application of advanced technology requires a thorough systems-based energy survey and rigorous engineering • Longer payback periods require detailed economic analysis and innovative financing requirements to achieve economic viability