

US POSTAL SERVICE CASE STUDY

INTERNET COMMUNICATING THERMOSTATS

Phyllis White United States Postal Service

Internet Communicating Thermostats

Overview

Thermostat that can send and receive settings / status over the Internet
 Wired & installed like conventional thermostats
 Operates with or without communication
 Remote access to thermostats via Internet connections, open system protocols
 Easy access for local user override

Thermostat setpoint affects energy savings

UNITED STATES

Installs and works like a conventional thermostat no "learning curve" intuitive without training

Internet Communicating Thermostats

Internet Connections

POSTAL SERVIC

 Controller communicates using CAT-3 or CAT-5 via standard interface
 Distribution panels connected to computer interface

- Each distribution panel connects up to 8 thermostats
- Each controller unit can connect up to 32 thermostats
- Could also control lighting relays and other equipment on same schedule

Internet Communicating Thermostats

Temperature set points
Schedule times, days, holiday/weekend
Local set point adjustment limits
Heating, Cooling, or Auto
Fan cycle or continuous

Case Study

Five facilities

Installed cost per facility average \$2000 □ Estimated savings: \$5,800 ~ \$8,400 per year

- □ Payback period: 1.5 to 2 years
- □ Installed by in-house technicians
- □ System is fairly simple and user friendly

Evaluations-Pros/Cons

* DDC – Direct Digital Control

INTERNET COMMUNICATING THERMOSTATS

Phyllis White United States Postal Service

Thank You!