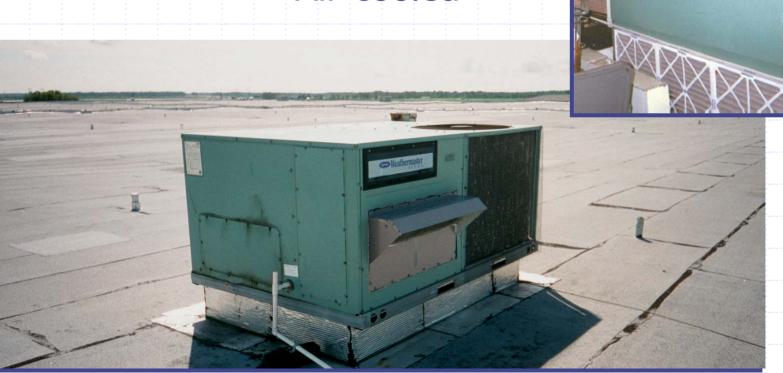
Achieving ENERGY EFFICIENCY with Standard **Air-Conditioning Units**

Mike West, PhD, PE
Advantek Consulting, Inc


Advantek

Standard Air Conditioning Unit

Packaged Unit
Split System

DY (not chilled was

DX (not chilled water)
Air-cooled

ENERGY EFFICIENCY

- **EER**
 - single point Energy Efficiency Ratio
 - MBH per kW
- ◆ SEER (5 tons and less)
 - Seasonal Energy Efficiency Ratio
 - kBtu per kWh
- **◆ IPLV** (10 tons and up)
 - Seasonal Integrated Part-Load Value
 - MBH per kW

FEMP Recommendation*

Efficiency Recommendation

Product Type ^a and Size	Recommended	Best Available
< 65 MBtu/h (3 phase)	12.0 SEER or more ^b	14.5 SEER
65 – 135 MBtu/h	11.0 EER or more 11.4 IPLV or more	11.8 EER 13.0 IPLV
> 135 – 240 MBtu/h	10.8 EER or more 11.2 IPLV or more	11.5 EER 13.3 IPLV

*How to Buy an Energy-Efficient Commercial Unitary Air Conditioner
NOVEMBER 2001

CEE Recommendation

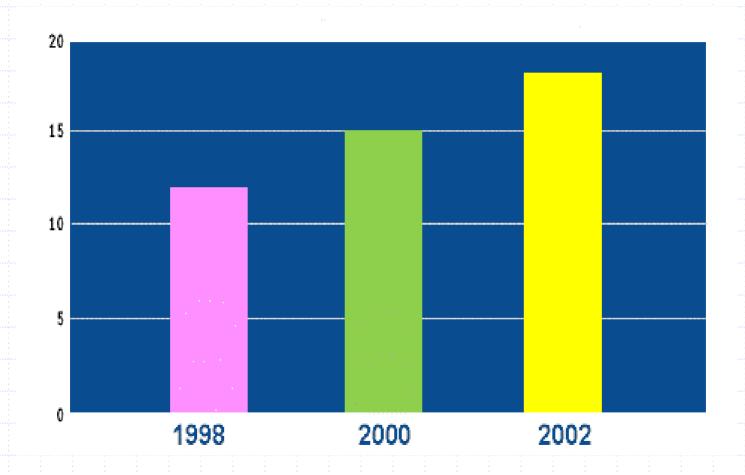
CEE's Tier I level is minimum industry standard. CEE's Tier II is the new "high efficiency" requirement, promoted by ENERGY STAR® and FEMP.

Minimum Allowable EER Ratings

MBH per kW

MBH	65-135	135-240
ASHRAE 90.1-1999 (Effective 10/29/2001)	10.3	9.7
CEE - Tier I	10.3	9.7
CEE - Tier II and EPA Energy Star	11.0	10.8
FEMP (as of 1/1/2002)	11.0	10.8
FEMP (after 1/3/2006)	12.0	12.0
FEMP (as of 1/1/2002)	11.0	10.8

MBH = kBtu/hr (1 ton = 12 MBH)


(65 = 5.4 tons, 135 = 11.3 tons, 240 = 20 tons)

CEE - Consortium for Energy Efficiency

EER - Energy Efficiency Rating

FEMP – Federal Energy Management Program

Percent Meeting CEE Tier II*

*http://www.cee1.org/resrc/updates/02-08hecac/02-08hecac.html

What is available today?

- "Standard Efficiency" IPLV 8.5 to 10.0
- "High Efficiency" IPLV 9.5 to 14.0
 - So-called "High Efficiency" unitary products are 10% to 40% more energy efficient than "Standard Efficiency."

Systems 5-tons and smaller are as high as SEER 18
Water cooled-chiller systems are as high as IPLV 20

"High Efficiency ... "

- ... is really not very high
- ... is 20% to 60% **LESS efficient** than the best
 - small split systems
 - water cooled chiller systems
 - they could be made (given a market)

Achieving ENERGY EFFICIENCY

- CAPACITY / SIZE
- SYSTEM DESIGN
- MODEL SELECTION
- INSTALLATION
- DUCTS
- OPERATION
- MAINTENANCE

CAPACITY / SIZE

Avoid Over-sizing

- Frequent cycling shortens component life
- Efficiency ratings are at steady-state
- Costs more & uses more power

Example: compare power draws of 2 units

15 ton: 15.7 kW

17½ ton: 18.9 kW

Added electric demand of 3.2 kW ~ \$300 per year

Insist that <u>documented</u> sizing calculations be performed using accepted ACCA or ASHRAE procedures. ACCA methods have sufficient builtin safety factors. Use ASHRAE design conditions.

SYSTEM DESIGN

- Use manufacturer's performance tables to determine real unit capacity (not nominal rating)
 - Select the model closest in capacity to the load
- Specify that TAB shall include supply air CFM, fan RPM, External SP, and EAT-LAT
- OA CFM must meet ASHRAE 62, provide exhaust makeup, and pressurize the building 0.02 to 0.04 in.wg [5 to 10 Pa]
- Consider price to avoid value-un engineering

SYSTEM DESIGN

- Factory Equipment Options
 - Filter pressure drop sensor
 - Motorized fresh-air damper with Economizer
 - Communications interface
 - High Static Drive Use static regain duct design
- After-market Add-ons
 - LPA liquid pressure amplification
 - EER-Plus desuperheater / subcooler

- Efficiency Rating (IPLV, SEER, or EER)
- Fan motor efficiency rating
 - Fan is 10 to 20% of unit power draw [kW]
 - Fan is 20% to 50% of unit energy usage [kWh]
- Number of Stages
- Ease of Maintenance
- Price

NO. CFM (IN. M.C.) (F) (F) (MBH) (MBH) (MBH) (MBH) (MBH) (IN) (H) (RLA)								ROOFTOF AIR CONDITIONING SCH						EDULE						
NO. CFM DB/NB AIR CAP. CAP. CAP. INPUT SIZE F. N RATINS (RLA)				FAN			COOL	ING				HEATING						LECTRIC		
		SERVING	CFM			DB/MB	AIR	CAP.	CAP.		CAP.	INPUT	SIZE	F	N				OUTDOOR FAN	V
	8 SALES	6 AREA	9000							(F)				7.	P)	10.0			(FLA) (6) © 7.8 EACH	
9 OFFICE MEZZANINE 2400 0.80 0.5 T1.8/64.3 95 58.6 73.2 4.0 62.4 78.0 NOTE I I. 9.5 8.2	OFFICE	E MEZZANINE	2400	0.80	0.5	77.8/64.3	95	58.6	73.2	4.0	62.4	78.0	NOTE I	,, 13		9.5	, i	8.2	8.2	

SPLIT SYSTEM HEAT PUMP SCHEDULE															
				FAN		COOL	ING			HEA	TING	OUTDO	OR UNIT EL	ECTRIC	
SSHP	SERVING		S.P.	MIN.	EAT	AMB.	SENS.	тот.	EAT	REOD	RESIST.	FAN	COMP		MANUFACTURER
NO.	manager and the second	CFM		O.A.	DB/MB	AIR	CAP.	CAP.		CAP.	HTR.ELEC.		ł	VOLTS-PH	OUTDOOR UNIT / INDOOR UNIT
	Samuel Samuel		(D.M.C.)	CFM	(F)	(F)	(MBH)	(MBH)	(F)	(MBH)	(KW, VOLTS-PH)	(FLA)	(RLA)		
1	TIRE SALES	480	0.15	40	76.8/63.8	95	14.5	17.0			3.0, 208-1	0.8	12.0	208-1	CARRIER 58QKE024
2	RECEIVING OFFICE	480	0.15	40	76.8/63.8	- 95	14.5	17.0		1	3.0, 208-1	0.8	12.0	208-1	CARRIER 58QKE024
3	COMPUTER OFFICE	480	0.15	40	76.8/63.8	95	14.5	17.0			3.0, 208-1	0.8	12.0	208-1	CARRIER 58QKE024
											en, jak				ista samunia Pitalia minitari

NOTE

- I. REFRIGERANT PIPE SIZES SHALL BE AS RECOMMENDED BY EQUIPMENT MANUFACTURER.
- 2. COOLING AND HEATING CAPACITIES LISTED ARE CALCULATED REQUIRED CAPACITIES.
- 3. INDOOR SECTIONS OF SSHP-2 AND SSHP-3 SHALL BE WALL MOUNTED.
- 4. PROVIDE LOW AMBIENT CONTROLS FOR EACH UNIT.

						ROO	FTO	P
		FAN			COOL	ING		П
ı		0.A.	E.S.P.	EAT	AMB.	SENS.	TOT.	П
	CFM			DB/MB	AIR	CAP.	CAP.	
		CFM	(IN. W.C.)	(F)	(F)	(MBH)	(MBH)	
[9000	3800	0.5	83.6/69.7	95	215	306	-
	2400	0.80	0.5	77.8/64.3	95	58.6	73.2	ě

ULE EER RATING 10.0 9.5

This unit has 2-compressors, but only 1 refrigerant circuit

This unit has 4 compressors, but only 2 control stages

Ease of Maintenance

Dual Source - the energy efficiency of ground-source with the low first cost of air-source

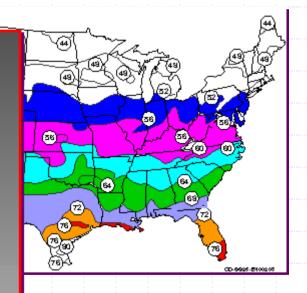
Uses ground-coupling to extend the delta-T available from ambient air

Application Example:

MS Naval Training Classroom Building

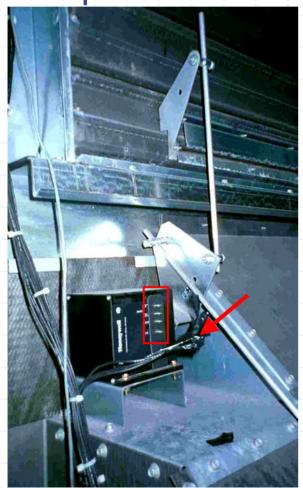
24,730 square feet

Two 35-ton Roof Top Package Units


Electric Cost: STANDARD AC: \$17,600

DUAL-SOURCE: \$12,400 (30%) GEOTHERMAL: \$8,000 (55%)

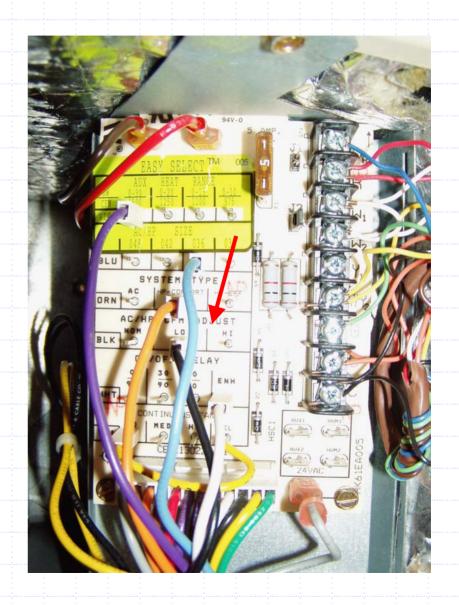
Installed Cost / Payback


STANDARD AC: \$30,000

DUAL-SOURCE: \$49,000 / 3.6 years **GEOTHERMAL:** \$125,000 / 9.9 years

INSTALLATION

Motorized Fresh-air damper with Economizer



INSTALLATION

Operating EER can vary up or down by one point with the fan speed setting and proper matching of indoor and outdoor unit sections.

Check these details to ensure the rated EER is realized.

DUCTS

Air leakage and heat gain rob air-conditioning system efficiency.

- The insulation level of traditional ducting is typically only R-4 to R-6 (1.5 to 2.2 inches).
 - Specify R-8 (3-inches)
- Leakage rates are typically 10% to 15% of total system airflow, sometimes higher.
 - Specify ASHRAE Leakage Class-3
- Test and Balance the Duct System

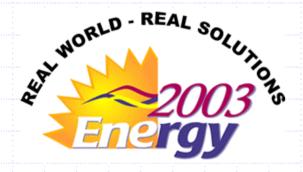
OPERATION

- Select a thermostat that will retain settings through a power outage, and that has a lockout or adjustment limits
- Program temperatures and occupied / unoccupied periods

MAINTENANCE

... critical to realizing rated EER for the life of the unit

MAINTENANCE


- Numerous energy surveys clearly show that lack of preventative maintenance is by far the major cause of air conditioning energy waste in FEDERAL buildings.
- Common and costly problems include:
 - clogged, corroded cooling and condenser coils
 - sizeable duct leaks and cabinet air leaks
 - low refrigerant, even in brand-new units
 - maladjusted air dampers
 - un-calibrated or nonfunctioning thermostats

RECOMMENDED ACTION PLAN

- 1. **Determine** the **actual operating efficiency** of installed equipment. Compare with the best new equipment.
- 2. Identify units that are candidates for replacement
 - if existing EER is 4 or more points less than the best new units.
- 3. Identify units that are candidates for upgrades
 - existing EER is 2 to 4 points less than the best new units.
- 4. Identify units for a **thorough** preventative maintenance **check and tune-up** when the existing EER is within 2 points of the best available units.

Achieving ENERGY EFFICIENCY With Standard Air-Conditioning Units

Thank you!

Michael West, Ph.D., P.E. Building Systems Scientist Advantek Consulting, Inc. mwest@advantekinc.com

AdvanTek